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1. INTRODUCTION

In the standard treatment of quantum integrable systems, one starts with
a finite box and imposes periodic boundary conditions, in order to ensure
integrability. Recently, there has been increasing interest in exploring other
possible boundary conditions compatible with integrability.

With non-periodic boundary conditions, the works on the Ising model
are among the earliest. By combinatorial arguments, McCoy and Wu(1)

studied the two-dimensional Ising model with a general boundary. They
calculated the spin-spin correlation functions of two spins in the boundary
row. Using fermions, Bariev(2) studied the two-dimensional Ising model
with a Dirichlet boundary. He calculated the local magnetization and
derived the third Painleve differential equations in the scaling limit.
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We study density correlation functions for an impenetrable Bose gas in a finite
box, with Neumann or Dirichlet boundary conditions in the ground state. We
derive the Fredholm minor determinant formulas for the correlation functions.
In the thermodynamic limit, we express the correlation functions in terms of
solutions of nonlinear differential equations which were introduced by Jimbo,
Miwa, Mori, and Sato as a generalization of the fifth Painleve equations.
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(L: box size, N: the number of particles, e= +: Neumann, e= —: Dirichlet)

Jumbo, Miwa, Mori, and Sato(8) developed the deformation theory for
Fredholm integral equation of the second kind with the special kernel
[sin(x — x')/x — x']. They introduced a system of nonlinear partial differen-
tial equation, which becomes the fifth Painleve in the simplest case. They
showed that the correlation functions without boundaries was the r-func-
tion of their generalization of the fifth Painleve equations. In this paper, we
express the correlation functions for Neumann or Dirichlet boundaries in

Bariev(3) generalized his calculation to a general boundary case. In the
Neumann boundary case, he also derived the third Painleve differential
equations in the scaling limit. Sklyanin(4) began a systematic approach to
open boundary problems, so-called open boundary Bethe Ansatz. Jimbo
et al.(5) calculated correlation functions of local operators for antiferro-
magnetic XXZ chains with a general boundary, using Sklyanin's algebraic
framework and the representation theory of quantum affine algebras.

Sklyanin(4) explained the integrability of the open boundary impene-
trable bose gas model, using boundary Yang Baxter equations. In this
paper, we will study density correlation functions (density matrix) for an
impenetrable bose gas with Neumann or Dirichlet boundary conditions.
Schultz(6) studied field correlation functions for an impenetrable bose gas
with priodic boundary conditions. He discretized the second quantized
Hamiltonian and found that the discretized Hamiltonian was the isotropic
XY model Hamiltonian. He diagonalized the discretized Hamiltonian by
introducing fermion operators. Using the N particle ground state eigenvec-
tor for the discretized Hamiltonian, Schultz derived an explicit formula of
correlation functions for an impenetrable bose gas in the continuum limit.
Lenard(7) pointed out that Schultz's formula could be written by Fredholm
minor determinants. Therefore this formula is called Schultz-Lenard
formula. In this paper, we will derive Schultz-Lenard type formula for
Neumann or Dirichlet boundary condition. Following Schltz, we employ
two devices. We consider the N particle ground state of the discretized
Hamiltonian. We then fermionize the discretized N particle system by using
the Jordan-Wigner transformation. In the continuum limit, we derive the
Fredholm minor determinant formula for correlation function, which has
the integral kernel:
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terms of solutions of Jimbo, Miwa, Mori, and Sato's generalization of the
fifth Painleve equations, hereafter refered to as the JMMS equations. In the
thermodynamic limit (N, L -> oo, N/L: fixed), we reduce the differential
equations for correlation functions with Neumann or Dirichlet boundaries
to that without boundaries, using the reflction relation between two integral
kernels [sin(x-x')/x-x'] +e[sin(x + x')/x + x'] and[sin(x-x')/x-x'].
The two point correlation function with Neumann boundary is described
by the Eqs. (2.29) and (2.30). In the case with boundary, the differential
equation for the two point correlation function cannot be described by an
ordinary differential equation. We need three variable case of the JMMS
equations.

Physically, the long distance asymptotics of the correlation function
are interesting. The long distance asymptotics of the ordinary differential
Painleve V is known. But, for many variable case, the asymptotics of the
JMMS equations are not known. Therefore we cannot describe the long
distance asymptotics of the correlation functions with boundary in this
paper. To evaluate the asymptotics of the solution of the JMMS equation
is our future problem.

Now a few words about the organization of the paper. In Section 2, we
state the problem and summarize the main results. In Section 3, we derive
an explicit formula for the correlation functions in a finite box. In Sec-
tion 4, we write down the differential equations for the correlation func-
tions in the thermodynamic limit.

2. FORMULATION AND RESULTS

The purpose of this section is to formulate the problem and summarize
the main results. The quantum mechanics problem we shall study is defined
by the following four conditions. Let NeN, ( N > 2 ) , LeR, 90, 9LeR.

1. The wave function \I/N,L = \l/N , L(x1,. . . , X N | 9 0 , SL) satisfies the free-
particle Schrodinger equation for the motion of N particles in one
dimension (0< ( x i = x j ) <L. Here the variables x1,..., XN stand for
the coordinates of the particles.

2. The wave function i j / N , L is symmetric with respect to the coor-
dinates.

715Correlation Functions for Impenetrable Bose Gas

3. The wave function satisfies the open boundary conditions in a box
0 < X j < L , ( j = 1 , . . . , N )



The wave function is not translationally invariant and has the normalization,

The following equation holds for any parameter A,

The following equivalent relation holds,

where we set Qd(k) = i log(id+k/id—X). We take the branch -n < 6d(X) < n,
(d>0). Here VN,L(90, 9L) is a normalization factor defined by

Here the momenta 0 < A 1 < ... <AN are determined from the boundary
condition for \ I /N , L which amounts to the equations

In this paper we shall be concerned with the ground state. The wave
functon is given by

4. The wave function i /N , L vanishes whenever the particle coor-
dinates coincide.
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The fermion operators have the anti-commutation relations

Here we use the notation {a, b} =ab + ba. Set

Following the usual convention, we let ^j+,oj, crj signify the operators
acting on then jth tensor component of V®M. Introduce fermion operators
^m < ^m be the Jordan-Wigner transformation

In this paper, following,(6) we reduce our problem to that of discrete M
intervals. Set e = L / ( M + 1 ) . Let |v1> =(1), |v2> =(0) be the standard basis
of V=C2. Let <vi|, (i=1, 2) be the dual basis given byvi|vj> =<?i,j,
( i , y=1 ,2) . The action of <9eEnd(C2) on <vi|, ( i = 1 , 2 ) is defined by
(<vi|O)|vj>), ( j=1 ,2 ) . Set |fl0> = | v 1 >® M and <fl0| = < v 1 | ® M . Set

From (2.9), (2.10) and Girardeau's observation on fermions and impene-
trable bosons correspondence in one dimension,(9) we can show that the
wave function \ / /N , L satisfies the above four conditions. We shall be
interested in the correlation functions (density matrix) given by
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Using the above vectors, we can calculate correlation functions in the
continuum limit as

where we take the limit M->co in such a way that £S j ->X j , et j->x'j,
(L: fixed). The equation (2.17) follows from (2.18) and (2.19).

This formula (2.17) is our standing point. The case 90, 9L = 0 corresponds
to Neumann boundary condition and the case 9 0 ,& L = co to Dirichlet
boundary condition. In the sequal, we use the following abbreviations.



denotes the n th Fredholm minor corresponding to the following Fredholm
type integral equation of the second kind.

Here the integral operator R,,N,Ip is defined by

where £ = ± and 0 < x', x" ^ L, (j = 1,..., n). Here Ip is the union of n inter-
vals Ip = [x1, x2] u ... u [x 2 n _ 1, x2n], where 0 < x1 < . . . < x2n < L is the
re-ordering of x1,..., x',,, x'n, x",..., x",. The symbol

In the sequel, for simplicity, we consider two important case: Neumann
boundary conditions and Dirichlet boundary conditions.

Remark. There exists the simple relations between Neumann or
Dirichlet boundaries and periodic boundaries. We can embed the differen-
tial equations for n point correlation functions of Neumann or Dirichlet
boundaries, to the one for 2n or 2n — 1 point correlation functions without
boundaries.

In Section 3, we derive the following formula.

Theorem 2.1. The correlation functions for an impenetrable bose
gas with Neumann or Dirichlet boundaries are given by the following
formulas.
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Using the above Fredholm minor formulas, we can take the thermo
dynamic limit for correlation functions, i.e., N, L-> co, N/L = p0: fixed.

Corollary 2.2. The correlation functions for an impenetrable bosi
gas with Neumann or Dirichlet boundaries are given by the followin]
formulas in the thermodynamic limit.

where 0 < x'/, x" < + oo, ( j=1 , . . . , n). The symbol

represents the nth Fredholm minor corresponding to the following Fredholm
type integral equation of the second kind,

where the integral operator Ke,Ip is defined by

In the sequel, we choose such a scale that np0= 1.
In Section 4, we derive the differential equations for the correlation

functions. Jimbo, Miwa, Mori, and Sato(8) introduction the generalization
of the fifth Painleve equations, hereafter refered to as the JMMS equations.
Their simplest case is exactly the fifth Painleve equation. We reduce the
differential equations for Neumann or Dirichlet boundary case to that for
without-boundary case, using the reflection relation in Lemma 4.2. For
n = 1 and Dirichlet boundary case:

Next we explain n = 1 and Neumann boundary case. The differential equa-
tion for p1(0 |x| + ) is described by the solutions of the Hamiltonian equa-
tions which was introduced in ref. 8 as the special case of the generalization



where the Poisson bracket is defined by

Here the functions r±j = r±i(a0, a1, a2), (j = 0, 1,2), r±0 = r±0(a0, a1, a2),
r±2 = r ± 2 ( a 0 , a 1 , a 2 ) satisfy the Hamiltonian equations

This Hamiltonian H depends on odd number variables a 0 , a 1 , a 2 . In the
case without boundary, the differential equations for the correlation func-
tions are described by the Hamiltonian equations which depend on even
number of variables.(8) Therefore this point is new for Neumann boundary
case.

In the general case, we can embed the differential equations for n point
correlation functions of Neumann or Dirichlet boundaries, to the one for
2n or 2n — 1 point correlation functions without boundaries.

Theorem 2.3. In the thermodynamic limit, the differential equation
for the correlation functions becomes the following.

Here H2(a0, a1, a2) is the coefficient of the following Hamiltonian

of the fifth Painleve equations. We cannot describe the correlation function
p,(0 |x| +) in terms of the fifth Painleve ordinary differential equation. We
need the many variable case of the JMMS equations.
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where we denote by d the exterior differentiation with respect to x1,..., x',,,
x",..., x". Here the differential forms w e , I p ( / ! ) and co ( y . y ' ) ( / I ) are defined in
Proposition 4.3 and Proposition 4.4, respectively. The differential forms
cu , I p(/l) and c o e , I p ( A ) are described in terms of solutions of the
generalized fifth Painleve equations which were introduced by Jimbo,
Miwa, Mori, and Sato.(8) Both Neumann and Dirichlet boundary condi-
tions, (we,Ip (A) are described by the same solutions of the same differential
equations.

Physically, it is interesting to derive the long distance asymptotics of
correlation functions:

From the above theorem, we can reduce the evaluation of the asymptotics
to the following two step problem.

1. Evaluate the asymptotics of the solution of the generalized fifth
Painleve introduced in ref. 8. (For our purpose, we only have to
consider the special solution related to the correlation functions
for the impenetrable Bose gas without boundary.)

2. Determine the asymptotic solutions of the differential Eq. (2.33)
under the appropriate initial condition. (The main point is to
determine the constant multiple in the asymptotics.)

In the case reducible to an odinary differential equation, the above
two problems have been already solved. Jimbo, Miwa, Mori, and Sato(8)

considered the problem 1 of the correlation functions for the impenetrable
Bose gas without boundary. McCoy and Tang(10) generalized the asymp-
totic formulas(8) to the 2-parameter solution of Painleve V, which is
analytic at the origin. Vaidya and Tracy(11,12) considered the problem 2
of two-point correlation functions for the impenetrable Bose gas without
boundary. (The pioneering work for Ising model was done by McCoy,
Tracy, and Wu. ( l 3 ) ) In our case, to evaluate the asymptotics of p 1 (0 |x| + ),
we have to consider the case of three-variables. However the asymptotics
in many variable case is a non-trivial open problem. Therefore the above
two problems for many variables case are our future problems.

3. FREDHOLM MINOR DETERMINANT FORMULAS

The purpose of this section is to give a proof of Theorem 2.1. Set
V= C2. For e = +, define operators rj + (8, e), //(6», s) acting on V®M by



Define operators pm, qm (m = 1,..., M) by

The operators r; + (dfl,M, E), n (Q t l , M , £) act on the vectors | Q N , M ( e ) > ,
( Q N , M ( e ) | as follows.

Using the operators t] + (B, e), r](6, E), we can write

In the sequel we use the following abbreviations.

In the sequel we use the notation 0f,M=^/(M+1)7t.The operators
rj + ( 6 t , M , £ ] , t i ( O t , M , s ) have the following anti-commutation relations for
£= +, - M < u < M .
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where — M < / z , v<M and d 1 ( x ) , 9 2 ( x ) are the step function

for peEnd((C2)®M). We call <£ >>e,Ntheexpectationvalueof the
operator p.

Lemma 3.1. The expectation values of the two products of
1 + (0,t,M, e) and ri(6^,M, s) are given by

We define

Therefore, pm and qm can be obtained by Fourier transformations.

The following relations hold for m > 1.

We have

Set
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Here s + ( x ) denotes the sign function

We have used the relation,

Proof. By direct calculation, we can check the following.

where l,m = 1, 2,..., M and

Proposition 3.2. The expectation values of the products of pm, qm

are given by
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We prepare some notations. Choose 0<m1 < ... <m n<M and
0<mn + 1< ... <m2 n<M. Let m1<m'2< ... <m'2n such that mj=ms(j)

(aeS2n). Define the interval Ij,M and IM by Ij,M = { leZ\m' 2 j _ 1 + 1<
l<m2j}, IM = I 1 , MuI 2 , Mu ... uIn , M . Define tm, t IMeEnd((C2)®M) by
tm = q 1 P 1 . . . q m P m , tIM = tm1...tm2n. Define R^ p p I M ( l ,m) , R K < p q I m ( l , m ) ,
Re.qpIM(l,m) and R E . q q I M ( l ,m) by

where l,m=1, 2,..., M. Define the matrix Ke,IM by ( K c I M ) J , k e I M = < q j p k > ; . ^ -

Lemma 3.3. The expectation value of tIm is given by

For l, m = 1,..., M, the following relation holds.

Furthermore R E . p p I M ( l , m), R K , p q I M ( l , m), Re, qpIm(l, m) and R c ,q q I m(l , m) have
simple formulas. For I,meIM, the following relations hold.

Proof. From Wick's theorem and ( p 1 p m ) K , N = ̂ Im, we obtain
(P 1Pm t I M) r , N=<t I m>iMy i: ,N<>/.m- From this and Wick's theorem, we can
deduce



where we have used

Set

822/88/3-4-13

the Fredholm determinant and the nth Fredholm minor determinant,
respectively. Namely, we have

Let us denote by det(1 — X R . ^ N , J ) and

Define the integral operator &E,N,J by

We prepare some notations. Set
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Define the integral operator AK,N,J by

The resolvent kernel R ^ N , J ( x , x ' \ X ) can be characterized by the following
integral equation

Here we present a proof of Theorem 2.1.

Proof of Theorem 2.1. First, for simplicity, we show the « = 1 case.
For s1 ^s2, (s1, s2e {1, 2,..., M}), we have

Applying Wick's theorem and (pjpk>e,]N=$j,kand <qjqk>e,N = <5j,k, we
can write the above as a determinant

From (2.17), p1 , N , L(x1 |x|| s) = l im £ - 0 e N <o s 1 o + >e,1 + N holds, where
£ = L/(M + 1) and es1->x1, ss2 ->x1. Set v = s2 — s1. From Proposition 3.2,
we obtain

where we set



Now, we have proved n = 1 case. Next we shall prove the general case.
From Proposition 3.2 and Lemma 3.3, we can deduce,

From Lemma 3.3, we see Y l e I M (K e , I m ) m , I R E , q p I m ( l ,m ' ) = dm,m'. Comparing
this relation to the relation (1 — X K e , N , I p ) ( 1 + 1Re,N,Ip ) = 1, we can deduce
the following

We can write down

Here H ( y 1 , y 2 ) is a continuous function, and we use

We apply the following relation to the above equation
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where ( L / M ) m ' j - > xj, (L/M)m'n + j-* xj, ( j = 1 , . . . , n ) , when M-» oo. Using
the Fredholm identity,

From the Eqs. (3.45), (3.46), and (3.48), we can deduce

The expectation value <0m10m2 ... 0mn0mn+10mn+2 ...0m2n>e,n+N can be written
as Pfaffian. (See p. 967 of [?]). Furthermore, from (3.47), we can write the
expectation value as a determinant

From the parity argument, we obtain

730 Kojima

for mj=mk, (L/M) mj--»xj (j= 1,..., n). Choose 0^m 1 < . . . <m n ^M and
0^m n + 1< ... <m 2 n ^M. Let m1^m2^ ... ^m'2n such that mj = m f f ( j )

((reS2n). Set
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we can deduce the following

This complete the proof of the general case. |
Fredholm minor series in this correlation function is a finite sum

because

To see this, define an m x M matrix AM(a|x 1 , . . . , xm) by

Using this matrix, we obtain the following.

Here AT represents the transposed matrix. <,From elementary argument of
linear algebra, we can see det( A M(a| x1,..., xm) AT(p|x1,..., x'm)) = 0, for
m^M+ 1. Now we have proved (3.52).

4. GENERALIZED FIFTH PAINLEVE EQUATION

The purpose of this section is to give a proof of Theorem 2.3. Following
ref. 8, we describe the correlation functions in terms of the generalization of



Let us denote by det(1 -l£e,J) and

the Fredholm determinant and the nth Fredholm minor determinant,
respectively. Namely, we set

The resolvent kernel R t , J (x , x' | A) is characterized by the following integral
equation,

Definne the integral operators A,,J by

Set

Define the integral operators &C,J by

the fifth Painleve equations, which are given by Jimbo, Miwa, Mori, and
Sato in the thermodynamic limit (N, L-> oo, N/L = p0: fixed). Set
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where we have used

We set

Contrary to the case in a finite box, the Fredholm minor series
in correlation functions is infinite series and correlation function
p n(x 1 , . . . ,x ' , |x" , . . . ,x^ |e) becomes a transcendental function. In the sequel,
we shall study the differential equations for correlation functions in the
thermodynamic limit. In what follows we can choose such a scale that
np0=1.

We prepare some notations. Let - oo < a1 ̂  a2 ̂  . . . ^a2m < + oo. We
denote by / the interval defined by I= [a1, a2] u . . . u [a2m- 1, a2m]- Set

Define the integral operators LI by

Set

Define the integral operator §, by

The resolvent kernel S I(x, x'A) is characterized by the following integral
equation,



We set

and

where the integration <j>CI dy^ is along a simple closed CI oriented clock-
wise, which encircle the points a1,...,a2m. In (4.17), x is supposed to be
outside of C1. We denote SI(x, x ' | A ) those obtained by letting x inside of
CI in (4.17). S I ( x , x ' | l ) is an entire function in both variables x,x'.
S I ( x , x ' | l ) is holomorphic except for a pole at x = x'. S r

I (x ,x ' \A . ) has
branch points at x = a1,..., a2m. The singularity structure of S,(x, x' | A) is a
follows

Set

Set
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The matrix Y I ( x ) is holomorphic and det Y I ( x ) = 1. It is known that Y I(x)
satisfies the linear differential equation (4.49). See ref. 8. We define the
matrices Y(a-a')(x) and Y ( a- a ' )(x) by

From (4.17), we obtain the following formula

The matrix Y ( a - a ' ) ( x ) is holomorphic and

From the relation (4.19), we obtain the following monodromy properties

We define the matrices Y I ( x ) , Y I ( x ) by

In (4.20), x is supposed to be outside of CI. We denote by S ^ I ( x | X ) those
obtained by letting x inside of CI. The singularity structure of Sf, I (x , x'\X)
is as follows
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Define the matrix Y(a,a')(x) by

The matrix Y ( a , a ' ) ( x ) has the following local expansion at x = GO

where

We set

Z (a ,a ' )(x) is so normalized that the local expansion at x = oo takes the form

Here we start to consider our problem for correlation functions. Let
0 ̂  x1 ^ . . . ^ x'n < oo, 0^x" ̂  ... ^ x" < oo. Let Ip the union of n inter-
vals Ip = [x1, x2] u ... u [ x 2 n _ 1 , x2n], where 0<x1 ^ . . . ^x2n< oo is
the re-ordering of x1,..., x1,...,xn. Set In = [ — x2n, -x2n-1] u . . . u
[— x2, — x1]. In the sequel, we consider the case m = 2n, a1=
-X2n ,..., a2n= -x1, a2n + 1=X1,...,a4n = x2n. We set I=I p uI n .

Lemma 4.1. The resolvent kernel has the following symmetries



This means the Eq. (4.36).

Let us derive a formula for d log det( 1 — X K f , I p ) .

Proposition 4.3. We set cue,Ip(/l) = d logdet(1-l££,Ip). Then we
have
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The following is the key lemma.

Lemma 4.2. The resolvent kernel has the following linear relation

Proof. The following characteristic relation holds,

From (4.37) and the relation e2 = 1, we derive the following characteristic
relation,
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Here the matrix A(xj) is defined by

Proof. It is easy to see that

From the definition, we can derive the following formula

Using this formula, we obtain

Hence we have the first line (4.39). Substituting (4.22) into the differential
equation,
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which was derived in ref. 8, and comparing the coefficients of dx at x = xj,
we obtain the following

where

Substituting this relation into the first line (4.39), we obtain the second line
(4.40). |

Remark. It is known that the matrices A ( X j ) are solutions of the
generalized fifth Painleve equations introduced in ref. 8.

Let us derive a formula for

Let — oo <y, y' < + oo, (y¥=-y'}- In the sequal, we distinguish the following
four cases.

Set
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Here we set x0 = y, x2n+1=y'. Set K ( y , y ' ) = J ( y , y ' ) \ { 0 , 2n + 1}. Set the
notations as follows

Let us state the Proposition.

Proposition 4.4. We set

We denote by d the exterior differentiation with respect to xj ( j e J ( y , y ' ) ) .
Then we have

Here we set
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where

Proof. It is easy to see that

Then Lemma 4.2 and the following imply the jth part of (4.54)

For j = 0, 2n + 1, the following imply the jth part of (4.56)

The second lines (4.55), (4.58) follows from the first ones by the same argu-
ment as in Theorem 4.3. |

Remarks. It is known that the matrices B ( y , y ' ) and S(-y,y')

B ( - y , y ' ) S ( - y , y ' ) - 1 are solutions of the generalized fifth Painleve equations in
ref. 8. For special cases y = xi, y' = xj, we have the following formula A ( y , y ' ) ;

Finally we give a proof of Theorem 2.3.

Proof of Theorem 2.3. Use the following formula

and apply Proposition 4.3 and Proposition 4.4. |
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For n = 1 and 0 = x' <.x case, because R[0,x](0, x \ A ) =2S [_x ,x](0, x|/t),
the differential equation becomes simpler form

Here

The 2x2 matrixes Bj = B j ( a 0 , a 1 , a 2 ] , (j = 0 ,1,2) depend on three
parameters a0, a1, a2 and satisfy the following differential systems that have
the singularities at y = a0, a1, a2, oo. We denote by d the exterior differen-
tiation with respect to y, a0, a1, a2

where the 2x2 matrices Z ( b 1 , b 2 ) ( y ) are defined in (4.31). The integrability
condition

gives rise to the following closed differential equation

The eigenvalues of B0, B2 is (0, 1). The eigenvalues of B1 is (0,0). The
diagonal of B0 + B1 + B2 is (1, 1). From the above matrix properties, we
reduce (4.68) to the Hamiltonian Eqs. (2.30), (2.31), and (2.32) which was
introduced in ref. 8. And we have the Eq. (2.29).



ACKNOWLEDGMENTS

I wish to thank Professor T. Miwa, Professor M. Jimbo and Professor
M. Kashiwara for their advices. This work is partly supported by the Japan
Society for the Promotion of Science, of which the author is Research
Fellow.

REFERENCES

1. B. M. McCoy and T. T. Wu, Theory of Toeplitz determinants and the spin correlation
functions of the two-dimensional Ising model 4, Phys. Rev. 162:436 (1967).

2. R. Z. Bariev, Correlation functions of the semi-infinite two-dimentional Ising model 1,
Theoret. Math. Phys. 40:623 (1979).

3. R. Z. Bariev, Correlation functions of semi-infinite two-dimensional Ising model 3,
Theoret. Math. Phys. 77:1090 (1988).

4. E. K. Sklyanin, Boundary conditions for integrable quantum systems, J. Phys. A21:2375
(1988).

5. M. Jimbo, R. Kedem, T. Kojima, H. Konno, and T. Miwa, XXZ chain with a boundary,
Nucl. Phys. B411[S]:437 (1995).

6. T. Schultz, Note on the one-dimensional gas of point-particle boson, J. Math. Phys. 4:666
(1963).

7. A. Lenard, Momentum distribution in the ground state of one-dimensional system of
Impenetrable Bosons, J. Math. Phys. 5:930 (1966).

8. M. Jimbo, T. Miwa, Y. Mori, and M. Sato, Density matrix of an impenetrable Bose gas
and the fifth Painleve transcendent, Physica 1D:80 (1980).

9. M. Girardeau, Relationship between systems of impenetrable bosons and fermions in one
dimension, J. Math. Phys. 6:516 (1960).

10. B. M. McCoy and S. Tang, Connection formulae for Painleve V functions II, Physica
20D:187 (1986).

11. H. G. Vaidya and C. A. Tracy, One particle reduced density matrix of impenetrable
bosons in one dimension at zero temperature, Phys. Rev. Lett. 42:3 (1979).

12. H. G. Vaidya, Thesis, State University of New York at Stony Brook (1978).
13. B. M. McCoy, C. A. Tracy, and T. T. Wu, Painleve functions of the third kind, J. Math.

Phys. 18:1958 (1977).

822/88/3-4-14

Correlation Functions for Impenetrable Bose Gas 743


